Download the SYNTHIA dataset

SYNTHIA-AL (ICCV Workshops 2019)

Description:

Dataset for active learning purposes. This is a video stream generated at 25 FPS. The classes considered in this dataset are void, sky, building, road, sidewalk, fence, vegetation, pole, car, traffic sign, pedestrian, bycicle, lanemarking, and traffic light. The provided ground truth includes instance segmentation, 2D bounding boxes, 3D bounding boxes and depth information!

For further details, please consult the following README

Data packages:
NamePackage
SYNTHIA-AL-Train SYNTHIA-AL-Train (13683 downloads)
SYNTHIA-AL-Test SYNTHIA-AL-Test (8506 downloads)
README SYNTHIA-AL-README (6048 downloads)

SYNTHIA-SF (BMVC 2017)

Description:

Video sequences subsets acquired at 5 FPS. There are 6 sequences featuring different scenarios and traffic conditions. There are 2224 images with associated ground truth used to check the accuracy of Slanted Stixels in our BMVC paper. For each sequence we provide useful information such as: left and right image, ground truth for semantic segmentation, instance segmentation, depth, and calibration parameters. The semantic classes are Cityscapes compatible, we consider: void, road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider, car, truck, bus, train, motorcycle, bicycle, road lines, other, road works.

 
Related videos: slanted stixels, BMVC 2017 presentation.
Data packages:
NamePackage
SYNTHIA-SF-BMVC2017 SYNTHIA-SF-BMVC2017 (7135 downloads)

SYNTHIA-RAND (CVPR16)

Description:

This is the set containing the original 13,407 images used to perform training and domain adaptation of the models presented in our CVPR’16 paper. These images are generated as random perturbation of the world and therefore do not have temporal consistency (this is not a video stream). These images have annotations for 11 basic classes and do not have annotations for instances. The classes are: void, sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, cyclist.

 
 
Related videos: depth groundtruth, semantic segmentation groundtruth, RGB 360 deg.
 

SYNTHIA-RAND-CITYSCAPES (CVPR16)

Description:

It is a new set containing 9,000 random images with labels compatible with the CITYSCAPES test set. In addition to the CITYSCAPES test classes, we also provide other interesting ones such as lanemarking. The list of classes is: void, sky, building, road, sidewalk, fence, vegetation, pole, car, traffic sign, pedestrian, bicycle, motorcycle, parking-slot, road-work, traffic light, terrain, rider, truck, bus, train, wall, lanemarking. These images are generated as random perturbation of the virtual world, therefore no temporal consistency is provided (this is not a video stream). This set contains groundtruth for instances!

 

SYNTHIA VIDEO SEQUENCES (CVPR16)

Description:

Video subsets acquired at 5 FPS. There are 7 sequences featuring different scenarios and traffic conditions. Each of them is divided into different sub-sequences for commodity. Each sub-sequence consists of the same traffic situation but under a different weather/illumination/season condition. The current sub-sequences are: Spring, Summer, Fall, Winter, Rain, Soft-rain, Sunset, Fog, Night and Dawn. Each of these sub-sequences contains around 8,000 (1,000 x 8) images with associated ground truth. For each sub-sequence we provide useful information such as: 8 views, ground truth for semantic segmentation, instance segmentation, global camera poses, depth, and calibration parameters. In this case the semantic classes are 13: misc, sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, cyclist, lane-marking.

Data packages:
NamePakcage


Highway
SYNTHIA-SEQS-01-DAWN (8035 downloads)
SYNTHIA-SEQS-01-FALL (6467 downloads)
SYNTHIA-SEQS-01-FOG (8308 downloads)
SYNTHIA-SEQS-01-NIGHT (5692 downloads)
SYNTHIA-SEQS-01-SPRING (14856 downloads)
SYNTHIA-SEQS-01-SUMMER (4773 downloads)
SYNTHIA-SEQS-01-SUNSET (2350 downloads)
SYNTHIA-SEQS-01-WINTER (2953 downloads)
SYNTHIA-SEQS-01-WINTERNIGHT (10894 downloads)


New York ish
SYNTHIA-SEQS-02-DAWN (2600 downloads)
SYNTHIA-SEQS-02-FALL (3937 downloads)
SYNTHIA-SEQS-02-FOG (6155 downloads)
SYNTHIA-SEQS-02-NIGHT (3138 downloads)
SYNTHIA-SEQS-02-RAINNIGHT (3557 downloads)
SYNTHIA-SEQS-02-SOFTRAIN (4224 downloads)
SYNTHIA-SEQS-02-SPRING (6502 downloads)
SYNTHIA-SEQS-02-SUMMER (4232 downloads)
SYNTHIA-SEQS-02-SUNSET (4389 downloads)
SYNTHIA-SEQS-02-WINTER (3697 downloads)


Old European Town
SYNTHIA-SEQS-04-DAWN (820206 downloads)
SYNTHIA-SEQS-04-FALL (6925 downloads)
SYNTHIA-SEQS-04-FOG (2590 downloads)
SYNTHIA-SEQS-04-NIGHT (4796 downloads)
SYNTHIA-SEQS-04-RAINNIGHT (1887 downloads)
SYNTHIA-SEQS-04-SOFTRAIN (1916 downloads)
SYNTHIA-SEQS-04-SPRING (4744 downloads)
SYNTHIA-SEQS-04-SUMMER (5415 downloads)
SYNTHIA-SEQS-04-SUNSET (1963 downloads)
SYNTHIA-SEQS-04-WINTER (4602 downloads)
SYNTHIA-SEQS-04-WINTERNIGHT (4447 downloads)


New York ish
SYNTHIA-SEQS-05-DAWN (4345 downloads)
SYNTHIA-SEQS-05-FALL (5640 downloads)
SYNTHIA-SEQS-05-FOG (1880 downloads)
SYNTHIA-SEQS-05-NIGHT (8407 downloads)
SYNTHIA-SEQS-05-RAIN (5039 downloads)
SYNTHIA-SEQS-05-RAINNIGHT (9617 downloads)
SYNTHIA-SEQS-05-SOFTRAIN (1900 downloads)
SYNTHIA-SEQS-05-SPRING (6944 downloads)
SYNTHIA-SEQS-05-SUMMER (2174 downloads)
SYNTHIA-SEQS-05-SUNSET (6391 downloads)
SYNTHIA-SEQS-05-WINTER (9779 downloads)
SYNTHIA-SEQS-05-WINTERNIGHT (3219 downloads)


Highway
SYNTHIA-SEQS-06-DAWN (2045 downloads)
SYNTHIA-SEQS-06-FOG (6060 downloads)
SYNTHIA-SEQS-06-NIGHT (2023 downloads)
SYNTHIA-SEQS-06-NIGHT (6556 downloads)
SYNTHIA-SEQS-06-SPRING (3028 downloads)
SYNTHIA-SEQS-06-SUMMER (4897 downloads)
SYNTHIA-SEQS-06-SUNSET (3276 downloads)
SYNTHIA-SEQS-06-WINTER (4774 downloads)
SYNTHIA-SEQS-06-WINTERNIGHT (2302 downloads)

Citation:

When using or referring to the SYNTHIA-CVPR’16 in your research, please cite our CVPR 2016 paper [ pdf ], please check our terms of use.

thumbnail of gros_cvpr16

 

@InProceedings{Ros_2016_CVPR,
author = {Ros, German and Sellart, Laura and Materzynska, Joanna and Vazquez, David and Lopez, Antonio M.},
title = {The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}

 
 
 
 
 

When using or referring to the SYNTHIA-SF in your research, please cite our BMVC 2017 paper [ pdf ], please check our terms of use.

 

@InProceedings{HernandezBMVC17,
author = {Hernandez-Juarez, Daniel and Schneider, Lukas and Espinosa, Antonio and Vazquez, David and Lopez, Antonio M. and Franke, Uwe and Pollefeys, Marc and Moure, Juan Carlos},
title = {Slanted Stixels: Representing San Francisco’s Steepest Streets},
booktitle = {British Machine Vision Conference (BMVC), 2017},
year = {2017}
}

 

When using or refferring to the SYNTHIA-AL in your research, please cite our ICCV Wokshops 2019 paper [ pdf ].

 

 

@InProceedings{bengarICCVW19,
author = {Zolfaghari Bengar, Javad and Gonzalez-Garcia, Abel and Villalonga, Gabriel and Raducanu, Bogdan and Aghdam, Hamed H and Mozerov, Mikhail and Lopez, Antonio M and van de Weijer, Joost},
title = {Temporal Coherence for Active Learning in Videos},
booktitle = {The IEEE International Conference in Computer Vision, Workshops (ICCV Workshops)},
year = {2019}
}